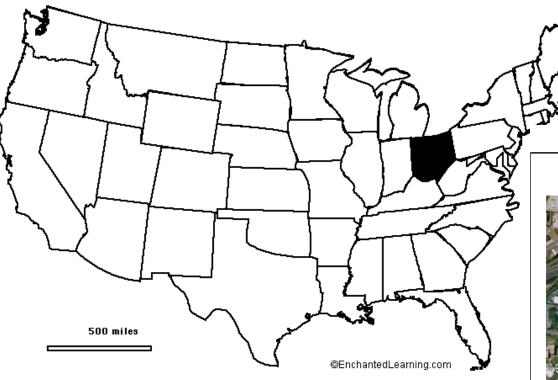
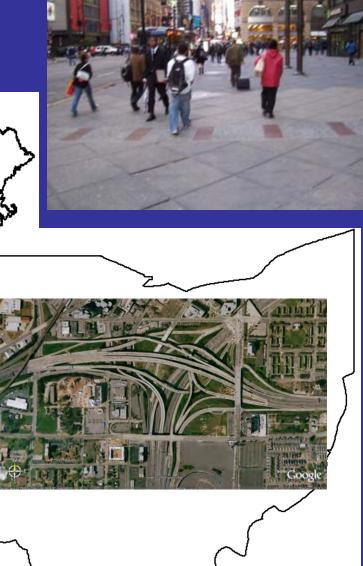
## Soil Quality Assessment: Dig, Look, Feel, and Test Joseph R. Heckman

**Professor & Extension Specialist in Soil Fertility** 


#### 2019

jheckman@njaes.rutgers.edu


Rutgers

New Jersey Agricultural Experiment Station

#### Paved Surface Deprives People of Soil Contact



116,534 sq. km impervious surface area within USA, equivalent in area to Ohio



"The earth lay rich and dark and fell apart lightly under the points of their toes" -P.S. Buck, The Good Earth

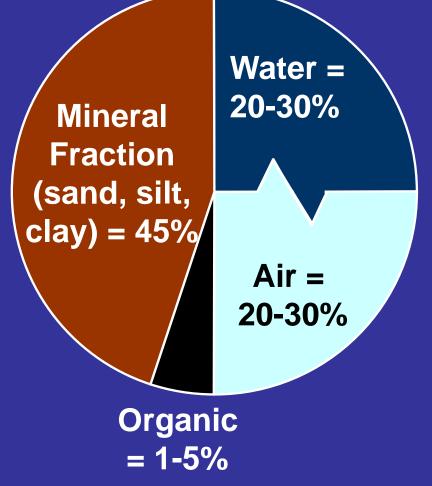
#### Historical References to Digging in Soils as a Restorative

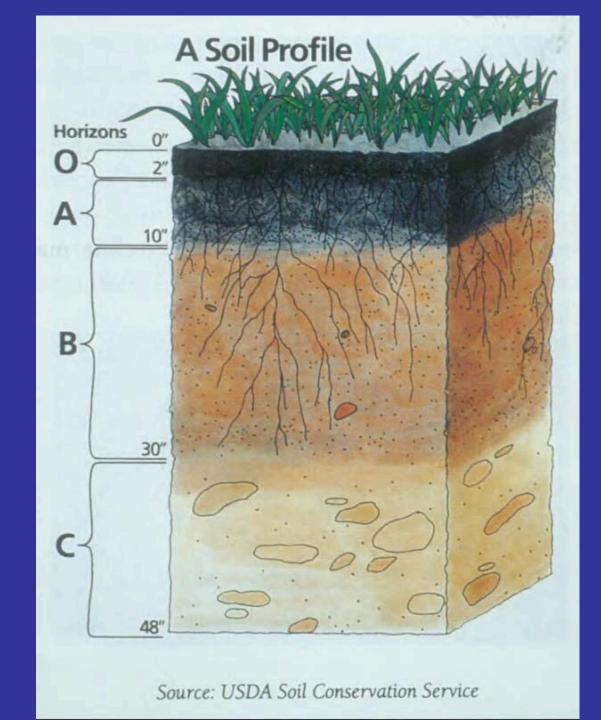


- 1699, the *English Gardener* advised "spare time in the garden, either digging, setting out, or weeding: there is no better way to improve your health."
- 1700's Dr. Benjamin Rush declared "digging in the soil has a curative effect on the mentally ill"
- 1870 Frederick Law Olmsted believed that nature reproduced in urban settings brings "tranquility and rest to the mind"
- 1940's Carl Menninger led a horticulture therapy movement in Veterans Admin Hospital
- 1955 MSU awards grad degree in horticultural/occupational therapy
- 1971 KSU establishes horticultural therapy degree curriculum

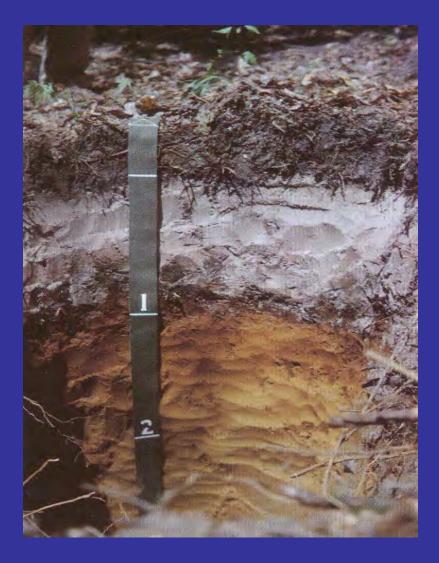
#### **Contact with Soils**

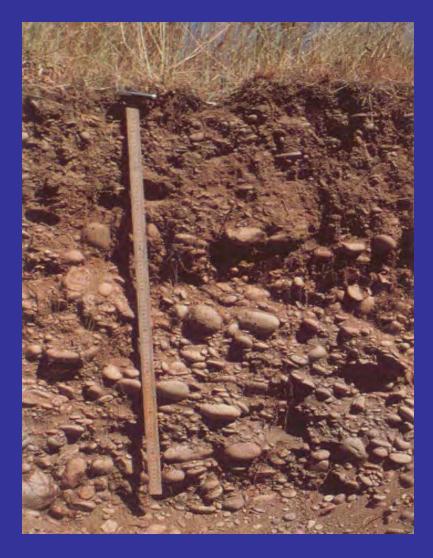
- A feeling for the organism
- Perception is multi-sensory
  - vision, smell, taste, touch, hearing




## **Composition of Soils**


- Minerals
- Air
- Water
- Organic matter (humus)







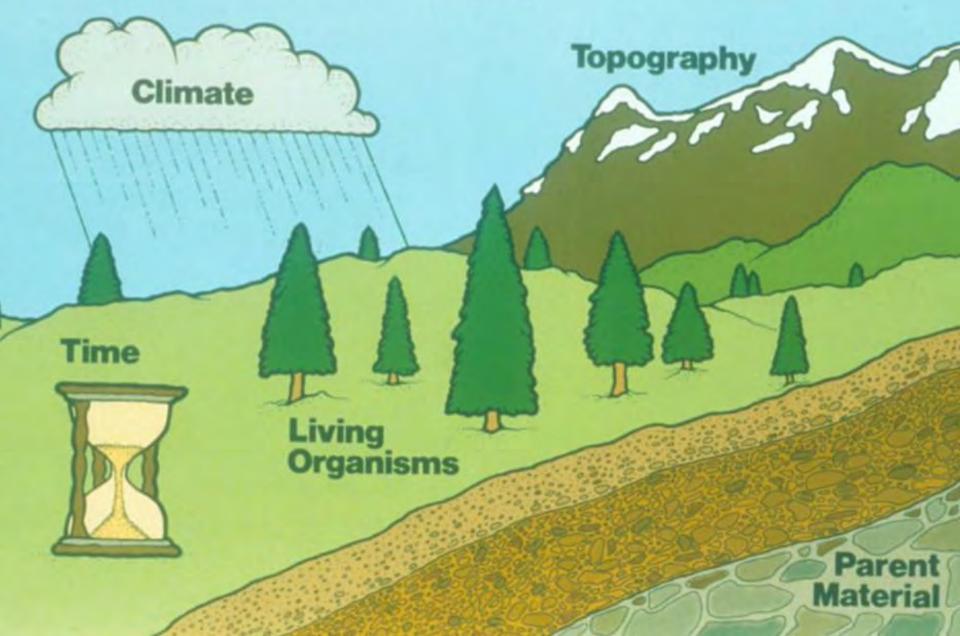

## **Compare Horizons**

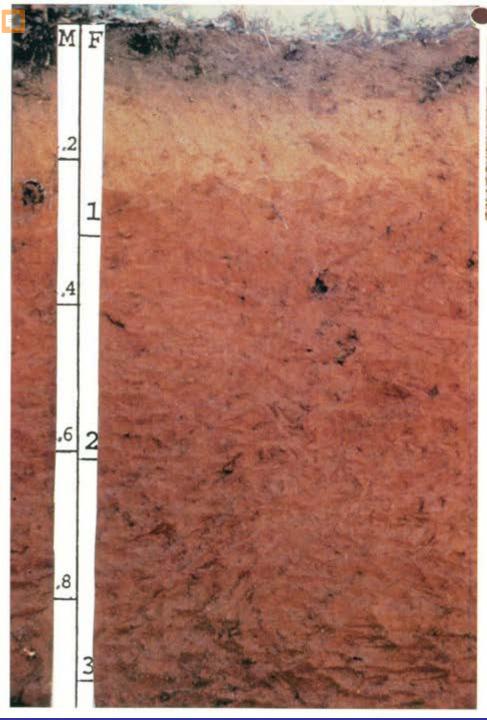




#### **Shallow Bedrock**



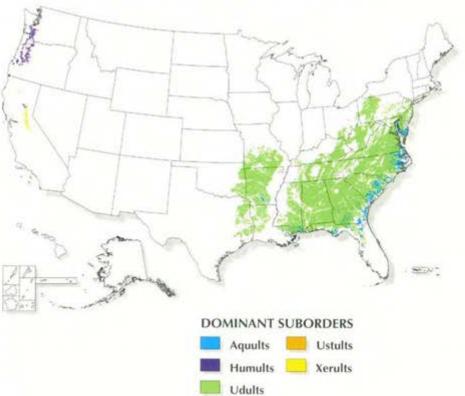

#### **Reading the Landscape**




# **USDA-NRCS Web Soil Survey**



# Soil Formation Factors






#### ULTISOLS



Ultisols - Soils that are in humid areas and have a clayenriched subsoil that is low in nutrients. These soils are dominantly in the southeastern United States. With soil amendments they are productive for row crops.



## Downer State Soil of New Jersey



## Landscape Beauty is a Living Expression of Soil Quality



### Junk in Soils



#### **Raised Beds**



#### **Raised Beds**



#### Ag – Choice, Newton, NJ

Temperature/Oxygen Probe

#### Windrow Turning



## Digging – Signs of Life-Soil Food Web





## Soil PED Talks on Web

- Soil Health Diagnosed as You've Never Heard Before by Shannon Cappellazzi
- Focusing on Soil Health from Ground Up by Alex Flock
- Partnering to enhance soil Health by Barry Fisher
- You are Changing the World! by Jane Hardisty

## Look and Feel Method – Soil Texture





# The Mineral Material: sand, silt, and clay

**Sand** .05 to 2mm feels gritty

**Silt** .002 to .05mm feels smooth

**Clay** less than .002mm feels sticky

the states

#### **Determining Soil Texture by Feel**

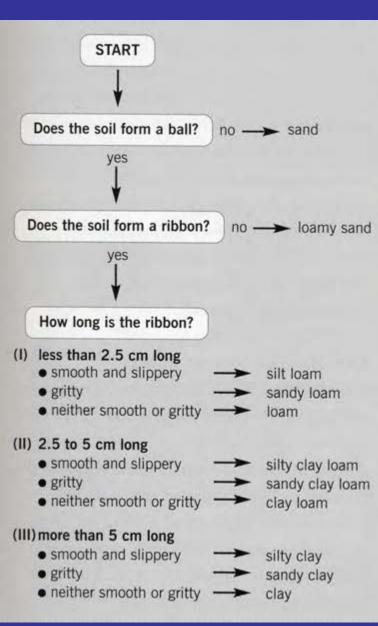
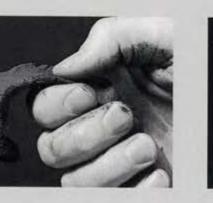








FIG 10A

Sandy loam: a ribbon less than 2.5 cm long forms; individual grains are visible.







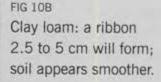
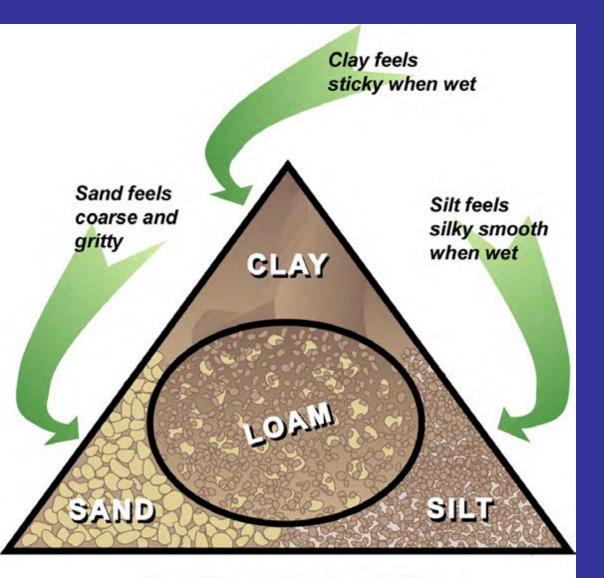




FIG 10C Clay: a ribbon greater than 5 cm can be formed; soil glistens somewhat.

#### **Soil Texture**



Loam is a combination of all these

How does it feel in your hand?

#### Soil Organic Matter Soil Texture

| Texture | <b>Organic Matter</b> |
|---------|-----------------------|
|         | %                     |
| Sands   | <1                    |
| Loams   | 2 – 3                 |
| Clays   | 4 – 5                 |

## Why determine soil texture?

Soil texture influences:
Water intake rates
Water storage capacity
Ease of tillage
Amount of aeration
Soil fertility

#### Urban Compaction Deprives Millions of Contact with Quality Soil





"My soil is just clay." Bane of the urban gardener

#### **Bad! Keep off Wet Soil**



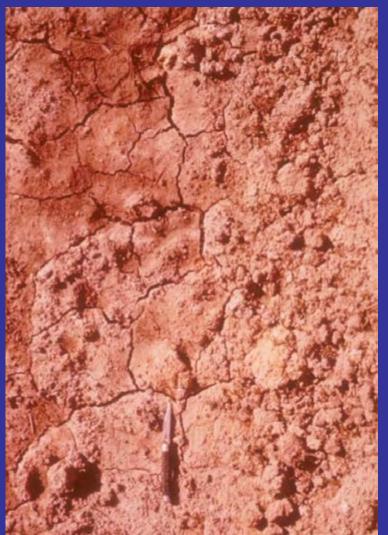
# Wheel Traffic Leads to Soil Compaction



## Soil Compaction/Earth Contraction



## **Wire Flag Test for Compaction**

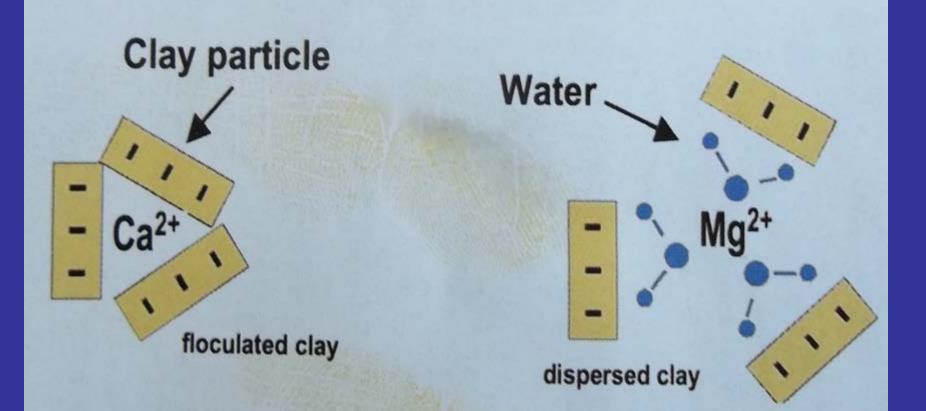



#### Water Infiltration Test



## **Soil Structure and Quality**

Poor




Good



#### **Calcium Improves Soil Structure**

Soil dispersion is mainly caused by highly hydrated ions, such as Na<sup>+</sup> or Mg<sup>2+</sup>, attracted to the surface of clay particles



### Lime Selection/Soil Test Level

- Dolomitic lime (high Mg)
  - Use when soil test Mg level is low relative to Ca
- Calcitic lime (high Ca)

   Use when soil test Ca level is low relative to Mg
- Gypsum (calcium sulfate)
   Use when soil pH is high but Ca is needed

• Calcium rich soils are more friable and easily tilled



### **Chemistry and Soil Color**



### **Soil Mottles**



 reddish spots within a blue-gray matrix that indicate the soil has experienced periods of poor aeration

### Good quality soil has:

- Good aeration
- Good drainage
- Good tilth (they're easy to work)
- Lots of organic matter
- Lots of organisms



### **Benefits of soil organic matter**

- Increased water and nutrient-holding capacity
- Formation of soil into stable aggregates
- Reduced soil compaction
- Improved water infiltration





### Horse Manure – Abundant Resource for Soil Improvement





### RUTGERS New Jersey Agricu'tural Experiment Station

Soil Testing Laboratory Rutgers, The State University ASB II 57 US Highway 1 South New Brunswick, NJ 08901-8554

Date Received: 2011-04-18

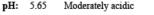
### Soil Test Report

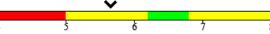
Lab #: 2011-9579

Name: George H. Cook

Address: 1 Sandy Lane Westampton, NJ 08060 Date Reported: 2011-04-29 Serial #: BU-5171 Sample ID: L-1

Phone:

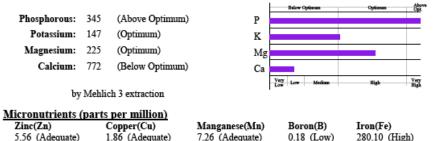

Fax:


Email: georgehcook@rutgers.edu

Crop or Plant Farm vegetable: mixed vegetable

Referred To: Rutgers Cooperative Ext. of Burlington County (609)265-5050

### Soil Tests and Interpretations






### Lime Requirement Index: 7.80

The Lime Requirement Index (LRI) is a measure of the buffering capacity of the soil, its resistance to pH change, and is used to determine the appropriate amount of limestone, when necessary. LRI value near 8.0 indicates low buffering capacity of soil and a lower rate of limestone amendment compared to soil with high buffering capacity (LRI near 7.0).

### Macronutrients (pounds per acre)



### Estimated Cation Exchange Capacity and Basic Cation Saturation

| CEC                                   | Base Saturation | Calcium      | Magnesium    | Potassium    |
|---------------------------------------|-----------------|--------------|--------------|--------------|
| 4.7 meq/100g                          |                 | 1.9 meq/100g | 0.9 meq/100g | 0.2 meq/100g |
| (100%)                                | 66%             | 41%          | 20%          | 4%           |
| Suggested Range of Cation Saturation: |                 | 65-76%       | 10-15%       | 4-7%         |

### Special Tests Results

No special test data available

### pH, Calcium, and Magnesium Recommendations

The soil pH is below the optimum range of 6.20 to 6.80 for the growth of most mixed vegetable.

To raise soil pH to target pH range, apply 900 pounds Calcium Carbonate Equivalent (CCE) per acre using calcitic limestone and till in to 8 in depth. Actual amount of limestone to be applied depends on CCE of the product used. For tillage depth other than 8", adjust the amount accordingly.

For new plantings this may be applied in a single operation spread uniformily on the surface, then mixed thoroughly to an 8 inch depth by tilling. Do not apply more than the recommended amount until the soil is tested again.

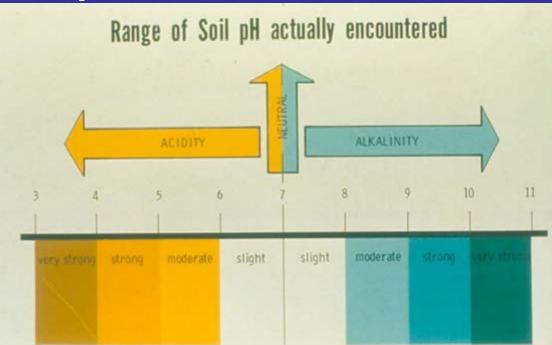
### Fertilizer Recommendations

\*The agricultural agent of Rutgers Cooperative Extension will fill in a copy of this table to provide recommendations.\*

| Plant nutrients recommended<br>(pounds per acre) |      |     | When<br>to apply | How<br>to apply1 | Notes |  |
|--------------------------------------------------|------|-----|------------------|------------------|-------|--|
| N                                                | P2O5 | K20 | Mg <sup>2</sup>  |                  |       |  |
|                                                  |      |     |                  |                  |       |  |
|                                                  |      |     |                  |                  |       |  |
|                                                  |      |     |                  |                  |       |  |
|                                                  |      |     |                  |                  |       |  |
|                                                  |      |     |                  |                  |       |  |
|                                                  |      |     |                  |                  |       |  |
|                                                  |      |     |                  |                  |       |  |

<sup>1</sup> Br=broadcast; PD=plowdown; DI=disk in; BP=band place; SD=sidedress; TD=topdress; Dr=drill <sup>2</sup> When magnesium soil test value is low or very low and no limestone is needed to correct soil acidity, apply magnesium in fertilizer form to meet crop needs as shown.

### Micronutrient Statements


Zinc does not appear to be a limiting factor. For information about zinc in soil for plant nutrition, see FS721.

Copper does not appear to be a limiting factor. As with most other micronutrients, copper availability is related to soil pH. Do not over-lime. For more information about soil copper, see FS720.

Manganese does not appear to be a limiting factor. Maintain soil pH in the optimum range, as directed in "Recommendations". See FS973 for more information about manganese in soil and plant nutrition.

# Soil pH

- Defined as the negative logarithm of the hydrogen ion activity of the soil solution
- Soil pH values below 7 are "acid"
- Soil pH values above 7 are "alkaline"
- Soils at pH 7 are "neutral"



### Soil pH Differences Influence Hydrangea Flower Color



pH > 7

### acidic soils

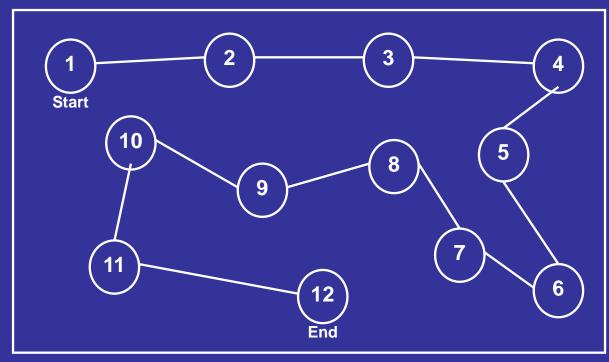
### White Clover

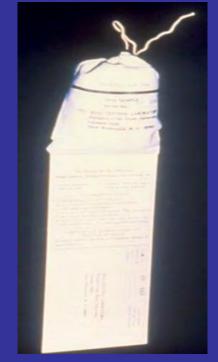






### First Things First – Take a Soil Sample





### **Soil Sampling Procedure**











### **Reasons Soil Scientists Dig Pits**

Soils can hold information about the history of a landscape

History of humans or the history of disturbance events that an area has experienced over time

### **History from a Soil Pit**

https://soilsmatter.wordpress.com/2019/12/01/how-can-soil-scientists-tell-the-history-of-a-location-from-a-soilpit/?\_cldee=amhIY2ttYW5AbmphZXMucnV0Z2Vycy5lZHU%3d&recipientid=contact-28a07c118e33db1197e1001279d6310b-5636965de7e946ddbdfbc2ad9891039a&esid=203a4001-d216-ea11-810f-005056a7afa5



The soil profile of the pit described in this blog. (Grey lines to aid the reader) Under the grass is a loamy soil, with a fairly dark brown color, indicating organic matter content. The soil changes to a sandy loam, and then to a silty loam. The most dramatic finding was pieces of charcoal. Remnants of past civilization? Evidence of cryoturbation? Only further study will tell. The scientists marked each horizon with sticks. Credit: Ryan Schroeder.

## How can I manage my soils to improve them?

- Avoid compaction by
  - Reducing tillage of wet soils
  - Reducing traffic on wet soils



- Increase the organic matter content by
  - Adding compost and manure
  - Growing and tilling in cover crops (green manure)
- Maintain cover with vegetation
- Encourage earthworms



## Soil PED Talks on Web

- Soil Health Diagnosed as You've Never Heard Before by Shannon Cappellazzi
- Focusing on Soil Health from Ground Up by Alex Flock
- Partnering to enhance soil Health by Barry Fisher
- You are Changing the World! by Jane Hardisty